為了探究某一化學(xué)反應(yīng)的作用機制,人們發(fā)展了越來越多的檢測手段進行分析與驗證。而隨著反應(yīng)類型的日益增多與復(fù)雜化,現(xiàn)有的分析方法有時無法滿足人們對機理研究的需求。例如,德國慕尼黑大學(xué)的Paul Knochel教授在有機金屬試劑(如格氏試劑、有機鋅試劑)的研究中做出了重要的貢獻。2006年,他發(fā)現(xiàn)LiCl可以加速鹵代烴對金屬Zn的插入形成有機鋅試劑,而在此之前只有格氏試劑可以通過鹵代烴直接插入金屬單質(zhì)的方式進行制備。這一發(fā)現(xiàn)隨后引領(lǐng)了一系列其他有機金屬試劑的高效合成,如有機銦、有機錳、有機鋁試劑等。
然而,人們對LiCl在加速有機鋅試劑形成中所起的作用以及有機鋅試劑結(jié)構(gòu)的變化并沒有一個明確的認識。以往的研究猜測,LiCl可能產(chǎn)生的影響如下:(1)LiCl可促進形成的有機鋅試劑溶解,有效暴露鋅金屬表面繼續(xù)參與反應(yīng);(2)LiCl可通過與鹵代芳香烴的芳香環(huán)絡(luò)合對其親電活化,促進電子轉(zhuǎn)移過程;(3)LiCl溶液具有高離子強度,可促進電荷分離,加速金屬插入。但這些假設(shè)并沒有得到相應(yīng)實驗的證實。
近,美國加州大學(xué)歐文分校的Suzanne A. Blum教授結(jié)合單金屬粒子熒光顯微鏡與核磁共振1H譜技術(shù)對這一問題進行了解釋。單金屬粒子熒光顯微鏡的靈敏度高達單分子水平,可提供基元反應(yīng)中形成中間體的重要信息,克服了以往其他分析手段監(jiān)測反應(yīng)時靈敏度不足的局限。核磁共振波譜分析則提供了總反應(yīng)速率與產(chǎn)物結(jié)構(gòu)的信息。兩者結(jié)合后可以得出不同鋰鹽對合成有機金屬試劑每個基元步驟的影響以及有機鋅試劑在溶液中的結(jié)構(gòu),從而為進一步拓展類似的鹽促進效應(yīng)以及其他類型的有機金屬試劑奠定了重要的基礎(chǔ)。相關(guān)工作發(fā)表在知名化學(xué)期刊J. Am. Chem. Soc.上。
▲單金屬粒子熒光顯微鏡與核磁共振1H譜技術(shù)聯(lián)用
作者首先設(shè)計了單粒子熒光顯微鏡表征實驗,以修飾熒光探針結(jié)構(gòu)的碘代丁烷(1)作為氧化加成顯像劑。熒光發(fā)光結(jié)構(gòu)為氟化硼絡(luò)合二吡咯甲川(BODIPY),可用于標記和跟蹤碘代丁烷插入Zn單質(zhì)形成氧化加成表面中間體(2)的反應(yīng)位點。1未參與反應(yīng)時在溶液狀態(tài)下快速擴散,因此觀察不到熒光成像,而當(dāng)其對Zn氧化加成在金屬表面形成2時,無機械擾動的情況下熒光發(fā)光基團保持靜止狀態(tài),此時不發(fā)光的鋅顆粒表面會出現(xiàn)亮綠色的“熱點”。
▲單金屬粒子熒光顯微鏡分析方法流程圖
在未加入任何鋰鹽的情況下,亮綠色的2穩(wěn)定存在,但加入LiCl后迅速溶解,熒光消失。作者還考察了其他的鹵化鋰(LiX, X = F, Br, I)鹽及LiOTf對2的影響,發(fā)現(xiàn)LiBr、LiI同樣可用作促進合成有機鋅試劑的添加劑。他們還在未加入任何鋰鹽的情況下分別對體系進行攪拌和加熱,實驗結(jié)果表明,前者可使2發(fā)生部分溶解,后者則可使2大幅度溶解,但溶解速率明顯慢于LiX (X = Cl, Br, I)存在的情況。這些重要的信息通過傳統(tǒng)的檢測手段是無法得到的,由此體現(xiàn)了熒光顯微技術(shù)在靈敏度及空間定位方面具有極大的優(yōu)勢。
▲熒光顯微鏡分析加入不同鋰鹽后反應(yīng)體系的變化
▲熒光顯微鏡分析不加入鋰鹽的情況下不同操作對反應(yīng)體系的影響(圖片來源: